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Abstract
We study the square-lattice XY model in the presence of random phase
shifts. We consider two different disorder distributions with zero average
shift and investigate the low-temperature quasi-long-range order phase which
occurs for sufficiently low disorder. By means of Monte Carlo simulations
we determine several universal quantities, which are then compared with the
analytic predictions of the random spin-wave theory. We observe a very good
agreement which indicates that the universal long-distance behaviour in the
whole low-disorder low-temperature phase is fully described by the random
spin-wave theory.

PACS numbers: 64.60.De, 75.10.Nr, 74.78.−w, 74.81.Fa

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The two-dimensional XY model with random phase shifts (RPXY) describes the
thermodynamic behaviour of several disordered systems, such as magnetic systems with
random Dzyaloshinskii–Moriya interactions [1], Josephson junction arrays with geometrical
disorder [2, 3], crystal systems on disordered substrates [4] and vortex glasses [5]. See [6, 7]
for recent reviews. The RPXY model is defined by the Hamiltonian

H = −
∑
〈xy〉

Re ψ∗
x Uxyψy = −

∑
〈xy〉

cos(θx − θy − Axy), (1)

where ψx ≡ eiθx , Uxy ≡ eiAxy , and the sum runs over the bonds 〈xy〉 of a square lattice. The
phases, Axy , are uncorrelated quenched random variables with zero average. A Gaussian
distribution,

P(Axy) ∝ exp

(
−A2

xy

2σ

)
, (2)
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Figure 1. Generic phase diagram of two-dimensional RPXY models in the temperature–disorder
plane. The full line corresponds to the transition line. The dashed line is the N line T = σ and
refers only to the CRPXY model.

has been considered in most of the studies of the RPXY. We denote the RPXY with Gaussian-
distributed phases by GRPXY. The pure XY model is recovered in the limit σ → 0, while the
so-called gauge glass model [8] with uniformly distributed phase shifts is obtained in the limit
σ → ∞.

The pure XY model shows a high-temperature paramagnetic phase and a low-temperature
phase characterized by quasi-long-range order (QLRO) controlled by a line of Gaussian
fixed points. In the latter phase, the spin–spin correlation function, 〈ψ̄xψy〉, decays as
1/|x − y|η(T ) for large |x − y|, with a T-dependent exponent η(T ); η(T ) ∼ T for small
values of T. The two phases are separated by a Kosterlitz–Thouless (KT) transition [9]
at [10] βXY ≡ 1/TXY = 1.1199(1). For τ ≡ T/TXY − 1 → 0+ the correlation length
diverges exponentially as ln ξ ∼ τ−1/2, and the magnetic susceptibility behaves as χ ∼ ξ 7/4,
corresponding to η = 1/4.

In this paper, we shall discuss the low-temperature behaviour of RPXY models for small
disorder. It has already been investigated in several works, most of them focusing on the
GRPXY; see, e.g., [1–5, 8, 11–36, 38–46]. The expected T–σ phase diagram, which is
sketched in figure 1, presents two phases at finite temperature: a paramagnetic and a QLRO
phase. The paramagnetic phase is separated from the QLRO phase by a transition line, which
starts from the pure XY point (denoted by P in figure 1) at (σ = 0, T = TXY ≈ 0.893) and
ends at a zero-temperature disorder-induced transition denoted by D at (σ0, T = 0). Note
that QLRO is observed only up to a maximum value, σM , of the disorder parameter, which is
related to the point M ≡ (σM, TM), where the tangent to the transition line is parallel to the
T-axis. The transition line from M to D is believed to run (almost) parallel to the T-axis, with
σ0 � σM ; see, e.g., [6].4

4 The first renormalization-group (RG) analyses based on a Coulomb-gas representation of the models [1] predicted
reentrant transitions for any value of σ � π/8, so that σ0 = 0. It was then clarified that this was an artefact of the
approximations. Indeed, in agreement with the experimental findings [11], numerical works [11–13, 30] and more
careful RG analyses [19, 24, 28, 29, 31, 35] showed the absence of reentrant transitions for sufficiently small values
of σ , that is predicted σ0 > 0. For the CRPXY, Ozeki and Nishimori[19] suggested that the transition line is parallel
to the T-axis below the Nishimori point M. It is not clear whether this conjecture is correct. Indeed, the analogous
conjecture fails in the case of the 2D ±J Ising model; see [47] and references therein.
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The QLRO phase of the pure XY model is expected to survive for sufficiently small values
of σ (see, however, [38] for a recent critical discussion of this scenario). It disappears for large
disorder, for [1] σ � σM ≈ π/8. The RPXY model for large disorder, and in particular the
gauge-glass model (σ → ∞), has been much investigated [5, 8, 14–18, 20, 22, 23, 26, 27, 32–
34, 36, 37, 39, 40, 42–46]. No long-range glassy order can exist at finite temperature [22, 23].
Some numerical works support a zero-temperature transition; see, e.g., [42, 43, 45].

Beside the GRPXY, we also consider a RPXY model with a slightly different distribution,
given by

P(Axy) ∝ exp

(
cos Axy

σ

)
. (3)

We denote the RPXY model with the distribution (3) by CRPXY. The CRPXY is interesting
because it allows us to obtain exact results along the so-called Nishimori (N) line [19],

T = σ, (4)

exploiting gauge invariance [19, 48, 49]. For example, the energy density is exactly known
along the N line: E = −I1(β)/I0(β), where β ≡ 1/T and In(x) are the modified Bessel
functions. Another important feature of the CRPXY is that along the N line the spin–spin and
overlap correlation functions are equal:

[〈ψ∗
x ψy〉] = [|〈ψ∗

x ψy〉|2], (5)

where the angular and square brackets indicate the thermal average and the quenched average
over disorder, respectively. The phase diagram is expected to be analogous to that of the
GRPXY model. As already noted in [49], the N line must play an important role in the
phase diagram, because it is expected to mark the crossover between the region dominated
by magnetic correlations and that dominated by randomness. In [19], it was proven that the
critical value, σM , of σ along the N line is an upper bound for the values of σ where magnetic
QLRO can exist (note that this does not exclude the existence of a glassy QLRO for σ > σM ).
Therefore, in figure 1 we can identify it as the point M where dσc/dT = 0; here σc is the
critical value of σ at a given value of T. The critical value σ0 at T = 0 must satisfy σ0 � σM ,
leaving open the possibility of reentrant transitions.

In this paper, we focus on the QLRO phase of RPXY models, and investigate its nature.
We present numerical Monte Carlo (MC) simulations of the GRPXY and CRPXY models.
As we shall see, their results confirm the existence of a QLRO phase in the low-temperature
region for small disorder. Moreover, they show that the universal long-distance behaviour
in the QLRO phase is described by the random spin-wave theory, in which the long-distance
behaviour is essentially identical to that in the model obtained by replacing [1]

cos(θx − θy − Axy) −→ 1 − 1
2 (θx − θy − Axy)

2 (6)

in the Hamiltonian (1). Some numerical evidence of QLRO in the GRPXY model was already
presented in [30].

The paper is organized as follows. In section 2, we summarize the main predictions of
the spin-wave theory, which are then compared with the numerical data in section 3. Our
conclusions are presented in section 4. The definitions of the quantities we consider are
reported in appendix A. In appendix B, we report the spin-wave calculation of ηs in the
CRPXY model for T → 0 in the low-disorder limit.
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2. The random spin-wave theory

In the spin-wave limit, the partition function is given by

Z({A}) =
∫

[dφ] e−Hsw/T , Hsw = 1

2

∑
〈ij〉

(φi − φj − Aij )
2, (7)

where the link variables, Aij , are uncorrelated quenched random variables with Gaussian
probability P(Aij ). For the GRPXY, the spin and the overlap correlation functions are given
by [1, 49]

Gs(x − y) = [〈ei(φx−φy)〉] = exp[(T + σ)G(x − y)], (8)

Go(x − y) = [|〈ei(φx−φy)〉|2] = exp[2T G(x − y)], (9)

where G(x−y) is the (infrared-regularized) two-point function of the Gaussian model without
disorder:

G(r) =
∫

d2p

(2π)2

eip·r − 1

p2
. (10)

For the CRPXY, one should take into account the nontrivial dependence of P(Aij ) on Aij .
For the overlap correlation function one still obtains (9): for any probability distribution
Go(x − y) does not depend on randomness in the spin-wave approximation. For the spin
correlation function, the σ dependence at T = 0 is more complex. For σ → 0 we obtain

Gs(x − y) = exp[(T + σ + σ 2/2)G(x − y)], (11)

disregarding terms of order σ 3. The derivation is reported in appendix B.
The above-reported results allow us to evaluate the exponents ηs and ηo which are related

to the large-distance behaviour of the spin and overlap correlation functions:

Gs(r) ∼ r−ηs , ηs =

⎧⎪⎨⎪⎩
T + σ

2π
(GRPXY),

T + σ + σ 2/2

2π
(CRPXY),

(12)

Go(r) ∼ r−ηo , ηo = T

π
. (13)

We can thus write for both models, at this level of approximation,

Gs(x − y) = exp[2πηsG(x − y)], Go(x − y) = exp[2πηoG(x − y)]. (14)

Note that the disorder dependence is completely included in the exponents ηs and ηo. Using
these expressions we can compute the universal functions, Rs(ηs) and Ro(ηo), which express
the ratios Rs ≡ ξs/L and Ro ≡ ξo/L in terms of the corresponding exponents ηs and ηo.
It is clear that Rs(ηs) and Ro(ηo) are identical [Rs(x) = Ro(x)] and disorder independent;
hence they coincide with those relevant for the pure XY model. These functions are shown in
figure 2. Below we show numerically that these predictions are satisfied by our numerical data.
This provides clear evidence for the spin-wave nature of the QLRO in the low-temperature
and low-disorder region of the RPXY models with Gaussian-like distributions of disorder. A
similar strategy was applied in [50] to clarify the nature of the low-temperature phase of fully
frustrated XY models.
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Figure 2. Rs ≡ ξs/L versus ηs (top) and Ro ≡ ξo/L versus ηo (bottom). The full lines are the
results of the random spin-wave theory, obtained by using expressions (14). The MC data are
obtained for the CRPXY and GRPXY models with σ = 0.1521.

3. Monte Carlo results

In this section, we numerically investigate the nature of the QLRO phase that occurs for
sufficiently small disorder. In particular, we want to provide a stringent check of the random
spin-wave scenario. The quantities which we compute are defined in appendix A.

3.1. Numerical details

We performed MC simulations of the GRPXY and CRPXY models, considering square lattices
of linear size L with periodic boundary conditions. We set in both cases σ = 0.1521, which is
well below the maximum value, σM (σM � 0.30 in the CPRXY model [51] and σM � π/8 in
the GRPXY model), and considered several values of T below the critical temperature Tc(σ ),
which marks the end of the QLRO phase. MC simulations in the high-temperature phase [51]
indicate Tc = 0.771(2) for the GRPXY and Tc = 0.763(1) for the CRPXY.

In the simulations we used a mixture of standard Metropolis and overrelaxed
microcanonical updates: a single MC step consisted of five microcanonical sweeps (in which
the spins are sequentially updated leaving the energy unchanged) followed by one standard
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Figure 3. MC estimates of ln χs/L
2 versus ln L for the CRPXY model at σ = 0.1521 and two

values of β ≡ 1/T , corresponding to T ≈ 0.139 and T ≈ 0.714.

Metropolis sweep. In the MC simulations of the CRPXY model we also used the parallel-
tempering method [52, 53]. It allowed us to perform efficient simulations in the region T � σ .
In the parallel-tempering simulations, we considered NT systems at the same value of σ and at
NT different inverse temperatures βmin ≡ β1, . . . , βmax. The largest value, βmax, corresponded
to the minimum temperature value we were interested in. The value, βmin, was chosen in the
paramagnetic phase and was such that thermalization at β = βmin was sufficiently fast. The
intermediate values βi were chosen such that the acceptance probability of the temperature
exchange was at least 5%. Moreover, we always included the value β = 1/σ , which lies
along the N line. This provided a check of the numerical programs, since the MC results
could be compared with the known exact results [49]. The overlap correlation functions
and corresponding χo and ξo were obtained by simulating two independent replicas for each
disorder sample.

In the case of the GRPXY model, we performed standard MC simulations at T =
2/3, 1/2, 2/5, for lattice sizes 10 � L � 40. Typically, we considered 50 000 disorder
realizations and performed O(105) MC steps for each of them. In the case of the CRPXY
model, the parallel-tempering method allowed us to investigate the temperature range T < Tc

down to T ≈ 0.139, which is below the N line, i.e. satisfies T < σ = 0.1521. We
performed simulations for lattice sizes 10 � L � 30. Typically, we considered 25 000
disorder realizations. For β ≡ 1/T = 7.2 we also performed standard MC runs up to L = 85.

3.2. QLRO in RPXY models

We estimate the exponents ηs and ηo by studying the finite-size behaviour of the susceptibilities
χs and χo defined in Appendix A. Indeed, for L → ∞ they behave as

χs,o ∼ L2−ηs,o . (15)

Estimates of χs are shown in figure 3. On a logarithmic scale, the data fall on a straight line,
indicating that the asymptotic behaviour (15) already holds for the values of L we consider.
In figure 4, we show the estimates of ηs and ηo for the GRPXY and CRPXY models. For
T � 0.2, they agree with the spin-wave approximations (12) and (13). Moreover, they appear
to be mostly independent of the model, in agreement with the random spin-wave predictions
(note that σ 2/2 = 0.0116 for σ = 0.1521). For a more quantitative check, in figure 5 we plot
the difference 2ηs − ηo versus T, and compare it with the low-order approximations:

6
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Figure 4. The MC estimates of ηs and ηo versus T for the GRPXY and CRPXY models at
σ = 0.1521. The lines shows the spin-wave approximations (12) and (13). The two lines that give
ηs for the GRPXY and CRPXY models cannot easily be distinguished on the scale of the plot.
The dotted vertical line corresponds to T = σ = 0.1521; in the CRPXY model this point belongs
to the N line.

0.0 0.2 0.4 0.6 0.8
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Figure 5. We plot the difference 2ηs − ηo versus T at σ = 0.1521, and compare it with the low-
order spin-wave approximations for the GRPXY and CRPXY models, cf (16) and (17), respectively
dotted and dashed lines. The vertical dotted and dashed lines indicate the critical temperatures of
the two models, i.e. Tc = 0.771(2) and Tc = 0.763(1) for the GRPXY and CRPXY, respectively.

2ηs − ηo = σ

π
(GRPXY), (16)

2ηs − ηo = σ + σ 2/2

π
(CRPXY). (17)

The agreement is very good. Moreover, the above-reported relations appear to hold up to
temperatures close to the KT transition, Tc (for σ = 0.1521 we have Tc = 0.771(2) for the
GRPXY model and Tc = 0.763(1) for the CRPXY model), suggesting that they may also hold
at the KT transition. Since MC simulations in the high-temperature phase [51] show clear
evidence that ηs = 1/4; this may suggest that at the KT transition

7



J. Phys. A: Math. Theor. 42 (2009) 295001 V Alba et al

0 10 20 30 40
L

0

5

10

15

20

25

30

35

40
T=2/3, ξg
T=1/2, ξg
T=2/5, ξg
T=2/3, ξs
T=1/2, ξs
T=2/5, ξs

Figure 6. The correlation lengths ξs , defined from the standard spin–spin correlation function and
ξg defined from a gauge invariant spin–spin correlation function, versus L. Results for the GRPXY
model with σ = 0.1521.

ηo ≈ 1

2
− σ

π
(GRPXY), (18)

ηo ≈ 1

2
− σ + σ 2/2

π
(CRPXY). (19)

The most important check of the spin-wave nature of the QLRO is provided by the MC data
shown in figures 2, where we plot Rs versus ηs and Ro versus ηo: they agree with high accuracy
with the curves Rs(ηs) and Ro(ηo) computed in the spin-wave limit. We believe that these
results provide conclusive evidence that the QLRO phase is determined by random spin-wave
theory.

Finally, we report some results for the gauge-invariant correlation function (A.4); see
appendix A. In the spin-wave limit, one finds [49]

[〈ei(φx−Ax,x′−...Ay′,y−φy)〉] = exp[(T − σ)G(x − y) − |x − y|σ/2], (20)

which predicts that gauge-invariant spin–spin correlation functions are not critical. For
instance, in the large-L limit the correlation length ξ

(gap)
g defined from the large-distance

exponential decay of the gauge-invariant correlation function is finite and given by ξ
(gap)
g =

2/σ , independently of T. These predictions are confirmed by our MC simulations. We compute
the second-moment correlation function ξg defined in (A.5). The results are reported in
figure 6. It is evident that ξg is finite in the large-L limit, satisfies ξg � 2/σ � 13, and is
independent of T. Again, this result shows that the critical behaviour is correctly described by
the spin-wave theory.

4. Conclusions

In this paper, we have studied the low-temperature low-disorder phase in RPXY models. We
have considered two different disorder distributions and for each of them we have computed
numerically the exponents ηs and ηo, and the correlation lengths ξs and ξo. These results have
been compared with the predictions of the random spin-wave theory. Our main results are the
following:

8
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(1) The ratios ξs/L and ξo/L, when expressed in terms of the corresponding exponents ηs and
ηo, are in perfect agreement with the analytic predictions. This indicates that expressions
(14) hold quite precisely in the whole low-temperature QLRO phase.

(2) Expressions (12) and (13) hold only for very low values of T. However, the difference,
2ηs − ηo, is apparently well described by spin-wave theory up to the critical transition
which marks the end of the paramagnetic phase.

(3) In agreement with the random spin-wave theory, the gauge-invariant spin correlation
function (A.4) is not critical.

Finally, note that our calculations refer to probability distributions for which [A] = 0. Very
little changes if we consider a nonzero average, for instance, one might use the distribution

P(Axy) ∝ exp[−(Axy − a)2/2σ ]. (21)

In this case we have [A] = a. The new model can be mapped into the original one by
performing the gauge transformation:

ψ ′
(x1,x2)

= e−ia(x1+x2)ψ(x1,x2), A′
xy = Axy − a. (22)

Hence this model has the same phase diagram as the original one. The transformation (22)
leaves the overlap correlation functions unchanged, since they are gauge invariant. The
behaviour of the spin–spin magnetic correlation functions is more subtle. If b = (a, a), in
Fourier space we have

G̃s(q; a) = G̃s(q + b; a = 0), (23)

where G̃s(q; a) is the Fourier transform of the spin magnetic correlation function in the theory
with a nonvanishing average a. In the standard theory (a = 0), the critical modes are those
with q = 0, while for q 
= 0 the behaviour is not critical. This implies that the critical modes
in the theory with a 
= 0 are those associated with a nonvanishing momentum q = −b. Hence,
in this theory the magnetic susceptibility, which corresponds to q = 0, is not critical.

As a final comment, we note that the distribution functions of the phase shifts are not gauge
invariant: phase shifts that differ only by a gauge transformation have different probabilities.
Another interesting issue is whether the results for the QLRO phase reported here also apply
to gauge-invariant distributions.

Appendix A. Notations

In terms of complex site variables ψi ≡ eiθi , the RPXY Hamiltonian takes the form

H = −
∑
〈ij〉

Re ψ∗
i Uijψj , (A.1)

where Uij ≡ eiAij .
We consider several two-point correlation functions: the magnetic spin–spin correlation

function5,

Gs(x − y) ≡ Re[〈ψ∗
x ψy〉] = [〈ψ∗

x ψy〉], (A.2)

and the overlap correlation function,

Go(x − y) ≡ [|〈ψ∗
x ψy〉|2], (A.3)

which can be written as Go(x − y) = [〈q̄xqy〉], where qx = ψ(1)∗
x ψ(2)

x , and the superscripts
refer to two independent replicas with the same disorder. The angular and square brackets

5 The last equality in (A.2) can be proved by using the symmetry ψx → ψ∗
x and Uxy → U∗

xy .

9



J. Phys. A: Math. Theor. 42 (2009) 295001 V Alba et al

indicate the thermal average and the quenched average over disorder, respectively. We also
consider a gauge-invariant spin–spin correlation function,

Gg(x − y) ≡ [Re〈ψ∗
x U [�x;y]ψy〉], (A.4)

where �x;y is a path that connects sites x and y, and U [�x;y] is a product of phases associated
with the links that belong to �x;y . The paths connecting the points x and y are chosen along
the lattice axes, choosing the shortest path (see [54] for details).

We define the corresponding susceptibilities: the magnetic susceptibility χs ≡ ∑
x Gs(x),

the overlap susceptibility χo ≡ ∑
x Go(x) and χg ≡ ∑

x Gg(x). We also define the
corresponding second-moment correlation lengths,

ξ 2
# ≡ G̃#(0, 0) − G̃#(qmin, 0)

q̂2
minG̃#(qmin)

, (A.5)

where qmin = 2π/L, q̂ ≡ 2 sin q/2, and G̃#(q) is the Fourier transform of G#(x) and #
indicates s, o, g.

Appendix B. Random spin-wave computation of ηs

In this appendix we wish to derive (11). We follow closely [1]. We first consider the spin–spin
correlation function Gs(r,Aα) = 〈exp [i(φ(0) − φ(r))]〉 for fixed values of the random phases
Aα . As in [1] we rewrite it as

Gs(r) =
〈
exp

[
i(φ(0) − φ(r)) − β

∫
d2rA · ∇φ

]〉
0〈

exp
[−β

∫
d2rA · ∇φ

]〉
0

, (B.1)

where 〈·〉0 indicates the average with the Hamiltonian

H = β

2

∫
d2r(∇φ)2. (B.2)

Repeating the steps discussed in [1] we end up with

Gs(r,A) = exp

(
T G(r) +

1

2

∫
d2s

∑
α

Aα(s)Mα(s, r)

)
, (B.3)

where G(r) is the Gaussian propagator (10) and

Mα(s, r) = 2
∫

d2q

(2π)2
e−iq·s(eiq·r − 1)

qα

q2
. (B.4)

Note that Mα(s, r) is imaginary, Mα(s, r)∗ = −Mα(s, r), so that

|Gs(r,A)|2 = e2T G(r). (B.5)

Thus, irrespective of the phase distribution, the overlap correlation function does not depend
on σ . To compute the spin correlation function we must average Gs(r,A) over the distribution
of the phases Aα . We consider the general distribution,

P(A) ∝ exp

(
−Q(A2)

2σ

)
, (B.6)

which satisfies Q(z) = z for z → 0 and is such that, for σ → 0, the distribution is peaked
around A = 0. Thus, to compute the expansion of Gs(r) for small σ , we can expand Q(A2)

in powers of A2. We assume

Q(z) = z + αz2 + O(z3), (B.7)

10
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where α is a distribution-dependent coefficient. For the distribution (3) we have α = −1/12.
To compute the correction of order σ 2 to ηs we rewrite ([·]A indicates the average over A)

S ≡
[

exp

(
1

2

∫
d2s

∑
α

Aα(s)Mα(s, r)

)]
A

∝
∫

[DA] exp

(
− 1

2σ

∫
d2s[A2 + α(A2)2] +

1

2

∫
d2s

∑
α

AαMα

)
. (B.8)

We introduce a new field, Bα , defined by

Aα = √
σBα +

σ

2
Mα (B.9)

and perform the integral over B. Disregarding terms of order σ 3 we obtain

S = exp

[
σ

8
(1 − 6ασ)

∫
d2s M(s, r)2

]
. (B.10)

Since ∫
d2s M(s, r)2 = 8G(r), (B.11)

we obtain finally

Gs(r) = e(T +σ−6ασ 2)G(r). (B.12)

If we set α = −1/12, we obtain result (11).
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